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scheme for the method of collective variables. Within this framework the dynamics of the 
internal modes of soliton excitations is considered. Using a systematic perturbation scheme 
in the amplitudes of these modes the radiation field is found and the dissipation of soliton 
excitations is determined. 

1. Introduction 

The problem of soliton excitations in nonlinear systems has been investigated by the 
collective variable approach in many papers (for references, see, for example, 1). 
Generally, the employment of collective variables involves the necessity of eliminating 
the zero modes that are due to the presence of continuous symmetries in the system. 
In particular, Tomboulis [Z] developed the canonical formalism enabling one to 
describe the evolution of the Goldstone variable, i.e. the soliton coordinate X ,  of the 
nonlinear Klein-Gordon equation 

aqx,  I ) - @ " ( x , f ) + U ' ( @ ( x , f ) ) = O  (1) 

and also of the field fluctuations @ ( x ,  f )  above the exact soliton solution "&(x-X0) .  
The possibility of using non-Goldstone variables as collective coordinates has been 
discussed in [3,4] in connection with the necessity of describing a compiicated pattern 
of soliton scattering in non-integrable systems. In a number of recent publications 
[5-81, collective variables have been used for describing the internal degrees of freedom 
of soliton excitations. In such an approach, the soliton is considered as a set of nonlinear 
oscillators, whose collective coordinates X ,  together with the Goldstone variable X ,  
are defined in terms of the initial field @(x) by the constraints 

It is evident that the efficiency of this approach depends on the choice of the ansatz 
The incorporation of non-Goldstone variables into the number of collective 

coordinates does not allow one to use the steady-state solutions of (1) as @=(x, X ) .  

an approach is noticeable even in the main approximation. In particular, it does not 
provide coincidence between the small-amplitude oscillation frequencies of the collec- 
tive variables and the corresponding frequencies of (1) linearized close to %(x) .  This 
fact illustrates the difficulties caused by the absence of an adequate functional relation 
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between the collective variables and the initial microscopic ones of the system under 
consideration. Similar difficulties are peculiar to a number of problems mentioned in 
section 2. One may say that for the majority of the systems considered such a difficulty 
is the rule rather than the exception. 

In the present paper we suggest a variational approach as a base for constructing 
a formalized scheme for the method of collective variables. In the framework of this 
scheme a natural relation between the collective variables and the initial variables is 
established. This is described in section 2. The rest of the paper is of illustrative 
character and is concerned with the nonlinear Klein-Gordon equation. In sections 3-5 
the transition to new canonical variables is carried out, the equations for the collective 
(soliton) field components are written in explicit form, and the expression for the 
Hamiltonian is presented in terms of these new variables. In sections 6 and 7, by means 
of perturbation theory in internal-mode amplitudes, the ansatz @<(x, X) is calculated, 
the radiation field generated by  the oscillations of these modes is found and the 
dissipation of soliton excitations is determined. In section 8 the possibilities of the 
method for two-soliton state analysis are discussed. 

2. Elements of variational formulation for the collective variable method 

Here !be possihi!i!y of forma!izing the transition from the initial dynamir vari&!es of 
the system to the collective variables is considered. Note that the same system may he 
described by different sets of collective variables. This is connected with both the 
specific formulation of the problem and its detailed consideration. As soon as the set 
has been formed on the base of some physical concepts, there arises the necessity of 
constructing a convenient mathematical scheme. This is caused by the transition to 
new variables as well as by the need to clarify the structure of the Hamiltonian in 
terms of these new variables, taking into account the significance of its components. 
Such a rearrangement is based on adequate division of the initial dynamic variables 
into collective and radiative (fluctuating) components. To accomplish this division in 
an acceptable mathematical form note that, in accordance with the main idea of the 
method, all the remaining variables are subordinate to the collective ones. This means 
that in the main approximation all other degrees of freedom may be interpreted as 
‘frozen’ into the flow of the collective variables and evolving together with this Bow. 
Considering that the collective variables are similar to the ‘external’ adiabatic para- 
meters with respect to the initial microscopic variables, it seems reasonable to define 
the coherent components of the initial microscopic variables as extremals which minimize 
the microscopic Hamiltonian of the system at given values of the collective variables. In 
other words, if, for example, xY( Q, P, q, p )  = 0 ,  [I = 1,. . , 2 n  is the system of constraints 
which define n pairs of the collective variables Q, P as functions of the initial micro- 
scopic variables q‘, p i ,  and H ( q , p )  is the microscopic Hamiltonian, then the coherent 
components q(Q,  P), p(Q, P) of the initial variables are defined as solutions of the set 
of equations for the conditional extremum 

where A, are Lagrange multipliers. 
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The above definition and the equations for extremals play an essential role in the 
formulation of the collective variable method. Their forms suggest that the trajectory 
of the system is located within a limited region of the total phase space in the vicinity 
of the extremals G(Q, P ) , p ( Q ,  P). Thus, we may conclude that the value of the micro- 
scopic Hamiltonian H (  q, p )  corresponding to its minimizing extremals defines the effective 
Hamiltonian 

HdQ, P ) = f f ( q ( Q , p ) , F ( Q , P ) )  
for the collective uariables. 

Usually, in macroscopic physics and in field theory this Hamiltonian is a subject 
of phenomenological research. The subsequent terms of the expansion of the micro- 
scopic Hamiltonian H(q ,  p) near the extremals q(Q,  P), p ( Q ,  P )  define the dissipative 
and radiative properties ofthe system. These terms are also significant for the determina- 
tion of low-energy scattering characteristics for collective and non-coherent modes. 

The scheme described could have been viewed as complete but for the following 
essential consideration. The suggested formulation of the collective variable method 
has implied a priori the existence of a definite functional relation between the collective 
variables Q, P and the microscopic ones q, p .  Actually, the macroscopic variables, e.g. 
the densities of conserved values in hydrodynamic theories, are directly expressed in 
terms of the initial variables of the system. At the same time, there exist a variety of 
topical problems characterized by the fact that, ab initio, the collective variables which 
are typical ofthem have no definite functional relation with the initial dynamicvariables. 
In particular, one may mention the coordinates of extended objects (e.g. domain walls 
or vortices) in multidimensional theories, soliton coordinates in multisoliton configur- 
ations, the parameters of local equilibrium states, i.e. the so-called Goldstone fields. 

To formulate a general definition of the relation between the collective coordinates 
and those of the initial system for the above non-trivial examples, consider the relation 
for the kink coordinate X,, of the one-dimensional nonlinear Klein-Gordon equation. 
In this case, the collective coordinate X, as a function of the initial field O(x) is defined 
from the gauge condition (2) in which the ansatz Oc(x, X,) is simply the static kink 
solution %<(x - X,) [2]. In other words, from all possible configurations one chooses 
only that which minimizes the Hamiltonian of the system H ( @ ,  II) corresponding to 
the kink states with the fixed kink coordinate X ,  as the ansatz Oc(x, Xo). 

To generalize the above observations, we define the dependence of the arbitrary 
collective coordinates Q ('gauge' coordinates) on the microscopic field coordinates by 
means of the gauge conditions 

where the ansafz qc( Q )  is the quasistatic configuration of the microscopic coordinates. 
This configuration is defined from its energy minimum condition, when the values of the 
collective coordinate Q are fixed. Or 

where A. are Lagrange multipliers. The brackets (. . .) denote the properly introduced 
scalar product; g.(q) is the corresponding metric tensor. 

These definitions imply that the initial system is a Lagrange system with the 
non-degenerate Lagrangian L(q, aq/al) .  Thus, taking into account the fact that in the 
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presence of the constraints ,ye(q, Q )  = O  the variables transform into the functions of 
the collective coordinates, we find the momenta which are canonically conjugate to 
the collective coordinates 

Moreover, the definitions of the ansatz qJQ) and the extrema1 q(Q, P )  yield the 
reiaiion q d Q )  = q(Q, 0). 

Defining the kernel of the projection operator 9 by the expression 

where 

we obtain 

from the equation for the ansatz qc( Q), taking into account the constraints ,ye = 0. 
Using the expression for 9; let us now present this equation in a more detailed 
form as 

The self-consistent forces GE/SQ on the right-hand side of this equation provide 
an optimum form of the ansatz qc( Q )  for the given values of the collective coordinates 
Q. For instance, if the coordinates are the degenerate parameters of vacuum solutions, 
these forces become equal to zero, and the ansatz q.( Q )  coincides with the correspond- 

The equation for the ansatz qc( Q )  contains important information on the character 
of the interaction of nonlinear excitation and allows one to establish the existence of 
bound soliton states. 

Consideration of the equation for the ansatz q c ( Q )  is now complete for the main 
points of the method. Further details within the framework of the general approach 
appears unnecessary. All the main elements of the scheme considered arise in the 
problem discussed below. 

ing vaccum so!.tion of !he q.&n Li f l /Sq = 0: 

3. Canonical transformation 

While studying the internal soliton modes of the one-dimensional nonlinear Klein- 
Gordon system described by the Hamiltonian 

r 

H =  d~[@~(x )+ fW~(x )+U(C ' (x ) ) ]  (3 )  J 
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we introduce into consideration the collective coordinates X,  corresponding to these 
modes and the momenta e. conjugate to X,. In accordance with the prescriptions of 
the previous sections, these variables may be expressed as functions of the canonical 
field pair @(x), n (x )  = b(x), using the constraints 

where @<(x, X )  is a quasistatic ansatz. The equation for this ansatz and the 
of this equation will be given below. 

By choosing some basis 'PA(& X)(('PA'P,,,)= SA,.) in the subspace of the 
(1  - 9), where the kernel of the operator 9 has the form 

(4) 

so I u t i o n 

operator 

in the given model, we may define the explicit dependence of the field variables on 
X,  using the expansions 

W, X) = @& X )  +E aAqA(X, X) P ( X ,  X) = ( I  -P)n(x) = E  b,Y, ( 6 )  
A A 

with the coetficients ai, b,, considered as independent 
Then using the formulae 

where 

and 

we obtain the expression for the initial field momentum n(x) in terms of the new 
variables: 

According to (4), (6) and (8) we have (bn) = XP+ ab, and since @(XI, n(x) are 
a canonical pair, it means that the new variables X, P and a, b are canonical too, with 
the following non-zero Poisson brackets 

{xi, pkl = s i k  {aA,  b d =  SA,.. (9) 

Note, however, that the variables a; b play an auxiliary role. It is their fluctuations or; 
more exactly, the fluctuations of the @(x) and ~ ( x )  fields against the background of 
their coherent (soliton) components that have a physical sense. Generally speaking, 
the dynamic variables corresponding to these fluctuations are no longer canonical. 

The results adduced in this section are a generalization of the canonical transforma- 
tion [2] for the case of arbitrary collective variables. 
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4. Equations for the soliton components &(x, X, P) and for the ansatz a&, X) 

As pointed out in section 2, the collective (soliton) components of the initial fields 
@(x),II(x) play an essential role in building and using the method of collective 
variables. These components are defined as extremals which minimize the Hamiltonian 
H(@, II) for the fixed values of the variables X ,  P. The ansatz @&, X )  is directly 
connected with these components. By definition, this ansatz is equal to the soliton 
component 6(x: X; P )  when P =0:  

(10) @JX, X )  = G(x, x, P)lp=o.  

Taking into account the constraints (4) by introducing the Lagrange multipliers 

E= H + Al,ylf A,x2 
and observing that, according to (4) and (6). 

we find the equations defining the conditional extremum 

SX SH 8@ sn 
S K S @  sx SX 

+ A ,  2- A, -= o _=_ 

Using (13), let us consider the equations 

From the first of this pair, in view of (8), it follows that the factor - A 2 (  coincides with 
the velocity Xr: 

The second of the two equations considered gives the value of this velocity at the 
extremum point: 

By action of the operator (1 -9) on expression (12) we shall now find the equation 
for the extrema1 6(x, X, P )  [91, 

where, according to (13) and (14), we have 
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It is evident that by virtue of the definition (10) and (5) and (15), the equation for the 
ansatz X )  has the following form: 

The solution of (15), which satisfies the kink asymptotics 

6 ( ~ ,  X ,  P) - %,jx -Xoj - 0 
x-*m 

can be considered as a non-stationary soliton excitation characterized by a set of the 
collective coordinates X and the momenta P. According to (15)  and (17), this solution 
at small P can be written as 

(isj 
8 \*l 

where 

a* 
d x  

L(@<)= -y+ L q 4 c ( x , x ) ) .  

5. Rearrangement of the Hamiltonian 

Owing to the division of the initial field into soliton and non-coherent parts, and the 
general definition of the effective Hamiltonian Ho(Q, P) for the collective variables 

@ = @ - 6,; = T - 15 may be presented as 
in 2, tiie total iianii;toniaii consi;ered as a fuiici~oiia; &icGa&ns 

H = H o ( X ,  P)+Hl(6,  &,X,  P)+  V(6, X ,  P) 

where, according to (3), (14) and (16), 

HJX,  .. P) =fPM-lP+H(&, 0) 

is the Hamiltonian defining the elastic dynamics of the collective variables. Since 
P& =0, and by virtue of (17) and (18), 

then to an accuracy of the order of P', the Hamiltonian Ho can be written as 

Ho(X,  P) =fPM(O)-'P+ H(QP, ,  Oj+O(P'). (19) 

By virtue of (15) and-( 16) and (1  I ) ,  the linear term in the expansion of the Hamiltonian 
in the fluctuations 4, 6 is absent. The exact expression for the squared term H2 is 
rather cumbersome. If we observe that, according to (7) and (16), 
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we may write H2 to an accuracy of the order of P :  

HI(&,  e, X,  P )  = f  (mL(@,)&)+(?;')-2PMc0'-' (g+)). (20) 

The expression for V(&, X,  P )  has the form 

The variables 6,7; define the field fluctuations above theoscillating soliton excitation 
5.6 and, therefore, are not canonical. However, at small @, 6, P their Poisson brackets 
are rather similar, according to ( 6 ) ,  (9) and (16), to the Poisson brackets that are 
characteristic of the canonical variables: 

I & ( ~ ) ,  & ( x , ) } - o ( ~ 3 )  
&x), G ( x ' ) ) =  ( 1  -PI(& X')+O(P4) .  

{ + ( x ) ,  ?;(x')] - O(PS) 
(21) 

In conclusion, it should be stressed that the approximation of the Ha and H2 fragments 
by (19) and (20) is suitable for describing 'slow' processes such as low-amplitude 
oscillations of soliton excitations, low-temperature response to a weak extemal per- 
turbation [lo], etc. 

6. Solution of the equation for the ansatz 

Considering the excited states of a soliton as a system of nonlinear oscillators, it is 
natural to seek the solution of the (17) in the form of a series: 

X) 

N N 

@&, X) = %<(X - X 0 )  + Uj(X -X, )X,  +f u,(x -x,)xjxk+. . . . (22) 
i = l  z ,k= l  

In the zeroth and first orders in X i ,  (17) leads to the corresponding equations for 
and ui: 

L = -  - +U"(%,) (24) 

where 9"' is the projection operator constructed from the vector %;, ut. The solution 
of (23) is the static soliton, while (24) is satisfied only by the eigenfunctions of the 

that, according to the definition of P"), we have (1 -9(o')ui = 0. As solutions of (24) 
that satisfy the zero boundary conditions at x +  fa we take the eigenfunctions of the 
discrete spectrum of the operator L with non-zero eigenvalues, 

(Px)' (1 - 9(a))Lui = 0 

~ p p r s t ~ r  L. !bet net by their supp~osition!. h p c ~ ~ e s  evident when i! is considered 

wi # 0 i = 1, . . . , N. (25) 2 LUi = w >  ut 

By virtue of the invariance of (17) under arbitrary non-degenerate transformations Of 
the collective variables Xi  + XI = X l ( X k ) ,  i, k = 0, 1, . . . , N all higher terms of 
expansion (22) can be considered orthogonal to the subspace of the discrete spectrum 
of the operator L: 

9(Q'u il . . . ik = 0 k > l .  (26) 
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The arbitrariness under scale transformations of the internal modes X, + X i  = u:X;, i = 
I , .  . . , N can be eliminated by putting mi; = (g;) = 1. In this case, the Hamiltonian 
&(X, P )  (191, corresponding to the solution for QJx, X),  will have the following form: 

m=(%;*). (27) 
P2 N 

2m 
H 0 = L + f  (Pf+W3X3)  

Hence we have the coincidence of the small-oscillation frequencies of the collective 
variables X with the eigenfrequencies of the operator L, which was mentioned in the 
introduction. 

As will be shown later, the radiation field value can he obtained by calculating the 
ansatz Q,(x,X) to an accuracy of the terms squared in the collective variables. 
According to (17), (22) and (25), the equation for the coefficients vjk has the form 

(28) 

which is consistent with the requirement (26). The kernel of the operator of projection 
on to the subspace of the continuous spectrum of the operator L can be written as 

(1  - P ' O ' ) [  ( L -  wf-w:)gjk f p( %c)u(Ck] =o 

( l - @ o ) ) ( x , ~ ) = -  dqa- ' (q)dx ,  q ) W x  4 )  

=-( 277 d q a - ' ( q ) W x , q ) d x  4 )  

2?r 'j 
1 

where p(x, q ) ,  V(x, q )  are the Jost functions of the operator L-Cl', 

L d q )  = (02+q2)c(q)  L*(q) = ( f i 2 + q 2 ) W q )  

which are defined by the asymptotics 

q(x, q)+e-'" x+-m 

~ ( x , q ) + e " "  x -m 

a - ' ( q )  is the forward scattering amplitude and Cl2 is the boundary of the continuous 
spectrum of the operator L. It is known that the function a-'(q) is a n a l y t m  the 
upper half-plane, with the exception of the discrete spectrum points q, = iJC12- w:, l = 
0, 1, . , , , N ;  w,, = 0,  where it has simple poles. Also, in the upper half-plane of the 
variable q, the functions eiqxp(x, q),  e-'4"V(x, q )  are analytical at any x. Therefore, the 
solution of (28) satisfying the zero boundary conditions at x +  *a can be written as 

vik(x)= -- d q a - ' ( q ) ( L - w j - w : ) - ' p ( x ,  q ) ( V ( q ) ~ " ' ( ~ ~ ) u ~ u k ) .  (29) 277 I, 
The position ofthe integration contour depends on the sign of o f +  w: -a2. If w f  + w :  < 
a', then the operator L - o f - w :  has no zero modes and the solution of (28) is 
determined by (29), where the integration is performed along the real axis. If w:+ w: > 
a', the integration is performed along the contour shown in figure 1. In this case, the 
residues with respect to the points q =  *J~o;+o:-Cl* are the zero modes of the 
operator L - w f -  w: ,  and the integral in the sense of the principal value is the partial 
solution of the inhomogeneous equation (28). The oscillating asymptotics of each of 
these contributions are mutually compensated under integration along the contour 
depicted in the figure. Knowing ujk, it is possible to find the field '$ in the main 
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- I ? , r l  * IG -I-- 
Figure I. The contour integration in the plane of the complex variable q (equation (29)) 
providing the zeroth limiting conditions for v , ~ ( x )  at x++m in the case &=u:+u:- 
CP>O.  

approximation. With the Goldstone mode momentum equal to zero, Po = 0, it follows 
from (18) and (22) that 

N N 

a q x ,  x, P )  = %<(X - XO) + 1 U,( x - X 0 ) X ,  +f 1 ( X , X ,  - 2P,PkL-1)u& - XJ. 
, = I  , . ,=I  

I. Equations for field fluctuations 

Internal mode oscillations of soliton excitation generate fluctuations of the variables 
6, 77 and, hence, lead to the radiation of continuous spectrum modes. We shall assume 
the oscillation amplitudes X to be small and, hence, their conjugate momenta P and 
the fluctuations of the field variables 6, & will also be small. We now construct the 
equations for the radiation field, calculating the coefficients of zero and first powers 
of the fluctuations 6,G to the main approximation in X ,  P. Neglecting the Goldstone 
mode X o  fluctuations in the approximation considered and putting Po = 0, from (27) 
and (30) we find 

{G, H o } - P 4 ,  X 2 P 2 .  

Also, according to (20)  and (21), we have 

{6, HJ = 77 {e, Hx}=-L& 

So, the set of equations for the field fluctuations will have the form 

6 = G - 2 1  w;P,X,L-’u;,, & = - L 6  

6+ L&= -2 1 w;L- ’u ik-  P,X; = I(t) 

1. k 

or 

d 
1. k dr 

where in the zero approximation 

I 
X ; ( t )  =:[A,  exp(iw,f)+cc] P, (c )  =: wj[Ai exp(iwit) - a l .  
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The field 6 generated by the source I ( r )  can be written as 

G~c,(f- t ' ) I ( f ' )dt '  

where 

is the retarded Green function of (32). Integrating with respect to f '  and using the 
solution (29) for ujh, we obtain 

I, 1 6(X, I )  = -- 1 o ? o k  dq a-'(q){AtAk exp(ioiht)ojh(L-o?k+i&)-' 
4T i,k 

+AfAk exp[i(ok -wi)t](ok - q ) [ L - (  wk - W { ) ~ ] - ' } L - ' (  L - o j - w : ) - l  

pP(x, ~ ) ( w ( q ) ~ " ' ( ~ ~ ) ~ ~ ~ h ) + c c  &'+O wj* = oi + w*. 
(33) 

As mentioned above, the integration contour is either coincident with the real axis (at 
of+ o: <a2) or tums round the singularities at points q = + J w f +  o:-C12 in the upper 
half-plane. This means that the finite contribution to the integral (33) at x+ +cc arises 
only from the zeros of the denominator L - o 2  *iE 1 Ing in the upper half-plane and 

behaviour of the field 6 of diverging waves will have the form 

tending to the real axis at points q = +qik = * *' otk n at E + +O. Thus, the asymptotic 

where we took into account that, for the even scattering potentials, p(-x, q )  = 9 ( x ,  9). 
So, to second order in the oscillator amplitudes, only waves with frequencies oik > Cl 
may radiate. 

The energy flux associated with the radiation field (34) is given by Q(x)= 
-6(x)6'(x). If there is only one intemal mode with frequency w , > n / 2 ,  then the 
energy flux averages over the oscillation period will be 

where E = f l  Al'o: is the oscillator energy. The oscillator energy dissipation under weak 
radiation is given by the equation = -2101, the solution of which is 

To exemplify, we may consider the soliton excitations in the model Q4, the frequency 
internal mode of which satisfies the inequality o,>n/2. For this model the potential 
U(@), the kink solutions %,(x) and the eigenfunctions of the discrete and continuous 
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spectra have the forms 

mx 
Jz z=- 

-iqr 3 tanh2z - 1 - ( f i q / m ) 2 +  (3 i f iq lm)  tanh z 
w’, =q2+2m2 

2-  (Jzq/m)2-3iJZq/m d x ,  4 )  = e  

The reflection coefficient is, in this case, equal to zero and a trivial integration gives 

9& a‘hl 
20 sinh2(w)m2‘ 

E - ’ ( t ) - E - I ( o )  = 

At w 1  <n/2, the approximation considered gives no radiation and, hence, there is no 
energy dissipation. In this case, in (31) one must take into account the higher terms 
in the oscillator amplitudes. In particular, if n/3 < w ,  <a/2, then the source in (33) 
must be calculated taking account of terms of third order in amplitude. It is evident 
that the energy in this case will be tC1’2. If w Cl, the dissipation is very low, and 
calculation of the radiation intensity becomes technically a difficult problem. 

8. Conclusion 

In the present paper we have formulated the variation principle which allows one to 
describe the dynamics of various nonlinear excitations in a universal form. The 
analytical possibilities of this method are connected with the possibilities of the solution 
of the equation for the ansatz qc( Q) which defines the quasistatic configuration theory 
of these excitations. The possibilities mentioned seem to be restricted by the framework 
of perturbation theory. Depending on the subject under consideration, expansion 
parameters can he applied to, for example, the curvature and thickness of multi- 
dimensional walls, vortices or, as in the case considered above, internal mode ampli- 
tudes. The use of the given scheme and, primarily, of the equation for the ansatz qc( Q ) ,  
is also of interest from the point of view of two-soliton configuration investigations. 
For instance, in the nonlinear Klein-Gordon system the ansatz @=(x, R ) ,  which 
describes the quasistatic two-soliton (soliton-antisoliton) configuration in the centre-of- 
mass system, satisfies the equation [ 9 ]  

where R is the distance between solitons, E ( R )  = H ( @ = ( R ) ,  0) is the energy of the 
two-soliton configuration and M“’ = dx(J@,(x, R ) / L ~ R ) ~ .  The advantage of this 
equation is that information on the structure of the one-soliton solution and, con- 
sequently, on the structure of the pair when R is large allows one to numerically 
reconstruct the two-soliton configuration QC(x, R )  and the two-soliton potential E ( R )  
for any R. A similar analysis carried aut  far analogous equations (or sets of equations) 
in other models allows us to build the two-soliton potential as a function of R and 
other collective coordinates, which define the mutual pair orientation in the internal 
space 
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